
Asynchronous Termination Detection Module
User’s Guide

William McLendon III
Sandia National Laboratories

�

wcmclen@sandia.gov

1 Introduction

Interprocessor communications are performed through point-to-point messages be-
tween processors. An application written in this manner can run with a higher
efficiency than an equivalent application that uses synchronizations. One added
complexity that exists with an asynchronous application that does not exist with a
synchronous application is the termination detection problem.

The termination problem is the problem of how exactly will a particular proces-
sor know when the global computation is finished and therefore can exit without
allowing a global synchronization. For some applications, we might know how
much work a particular process will perform a-priori, in which case termination
can be determined using local data such as a counter. In other situations, such
as one in which we do not know exactly how much work will be done a-priori,
termination occurs after the following two conditions are met.

1. There are no unreceived messages. (i.e., Every message that has been sent
by a process has been received by some process)

2. No process is doing any work. That is, all possible work has been exhausted.

These two conditions must be met because unreceived messages might create more
work, and if a process is still working then clearly the task is not finished and we
can’t exit.

As shown in Baker et al. [1], the processors can be mapped into a tree structure.
Tokens are passed from a node up to its parent or down to its children. An exam-
ple of a set of processors mapped into a tree is shown in Figure 1. This allows
an asynchronous communication scheme between processors and also guarantees

�

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Com-
pany, for the United States Department of Energy’s National Nuclear Security Administration under
Contract DE-AC04-94-AL85000.

0Sandia Document #: SAND 2005-3692 P.

1



O
�
log P � time for all processors to detect when the global termination condition is

met.

This document is presented as a user guide for a code library written in C with
MPI that implements a scalable parallel asynchronous termination detection. The
technology is based on the work presented in [1].

2 How it works

This routine allows an O
�
log P � termination detection by organizing all of the pro-

cessors involved in the computation into a binary tree. Figure 1 shows how a
grouping of 7 processors are organized into a tree with the three processor classi-
fications shown. There is one root processor which is the only processor that will
have no parent node. In this case processor 0 is the root. There are leaf processors
which have one parent and no children; these are processors 3, 4, 5, and 6. Finally,
there are internal processors, which have both a parent processor and one or two
children processors; these are processors 1 and 2 in our little example.

3 4 5 6

21

0

Figure 1: Example processor tree for 7 processors. Processor 0 is the root proces-
sor, processors 3, 4, 5, and 6 are the leaves, and processors 1 and 2 are the internal
nodes.

A processor will perform local work until it has nothing left to do, only then will
it enter the termination detection routine. This routine will determine whether or
not the global termination conditions have been satisfied without using collective
communications. Point-to-point messages are passed up and down a binary tree
mapping of the processors involved in the computation to track certain informa-
tion relevant to the status of the ongoing computation. The sum of all messages
sent, received, and work performed on each subtree is passed up to the root. Once
the root receives this information it determines if the global number of sends and
receives are matched. If these do match, it sends a query down the tree. Once
this query reaches the leaf nodes, they push their latest sum of sends, receives, and
work back up. Once the root node receives the sum from both subtrees it checks
to make sure that the number of sends and receives match and that no additional
work was performed since the previous iteration. If everything matches we know
the termination requirements are satisfied and the root processor sends a message

2



to its children notifying them that they can terminate and then sets its state to TER-
MINATE so it can exit. Each intermediate processor receives this message, sets its
state to TERMINATE and passes the message on to its children. When leaf nodes
receive a terminate message they simply set their state to TERMINATE and exit.

3 How to Use the Asych. Termination Detection Module

The termination detection module should be fairly straightforward in its usage.
The basic outline of a program that would use this termination detection routine is
shown in Algorithm 1. The function calls are defined in later sections within this
document.

begin
termdetect init(&zz, 1, 7193, MPI COMM WORLD);
repeat

while There is local work do
do nw units of work;
termdetect update workcount(&zz, nw);
send ns messages to other procs;
termdetect update sendcount(&zz, ns);
recv nr messages from other procs;
termdetect update recvcount(&zz, nr);

end
termdetect process(&zz);

until termdetect isterminated(&zz);
end

Algorithm 1: Example structure of an asynchronous application using ter-
mination detection.

In Algorithm 1 we first initialize the termination detection data structure. Then
we enter the main body of the computation where we will update the appropriate
counters for work completed, messages sent, and messages received. After the pro-
cess has exhausted its local work, the inner work–loop exits and we drop into the
outer loop, which is controlled by the termination status. There, a call is made to
the process() function where one step of the termination detection process is per-
formed. If this operation notifies the process that the global termination conditions
have been met then we can exit the routine since we know that all other processors
have also completed their work.

Since the processors are mapped into a binary tree and uses point-to-point mes-
sages we expect the extra time added to the end of an asynchronous computation
to be O

�
log P � .

3



begin
switch node type do

case root
if State � U p then

iReceive messages from children;
if recv’d f/m all children AND workold

�� worknew then
Send message down to children to do tree sum again;

else if recv’d f/m all children AND workold � worknew then
Send TERMINATE message to children;
State � TERMINATE;

end
break;

case leaf
if State � UP then

Send � nSend, nRecv, nWork � to parent;
State � DOWN;

else if State � DOWN then
iReceive message from parent;
if message is requesting data then

Send � nSend, nRecv, nWork � to parent;
else if message is TERMINATE then

State � TERMINATE;

break;
case internal

if State � UP then
iReceive messages from children;
if received from all children then

update global nSend, nRecv, and nWork with subtrees;
send message to parent with global data;
State � DOWN;

else if State � Down then
iReceive message from parent;
if message is request for data then

Send message to children requesting new subtree data;
State � UP;

else if message is TERMINATE then
Send TERMINATE message to children;
State � TERMINATE;

break;

end
end

Algorithm 2: termdetect process(): This is the general pseudo-code for the
termdetect process() function call. This function is the “brain” of the termi-
nation detection code.

4



4 List of Files in the Module

The termination detection routines are stored in the files termdetect.c and termdetect.h.

5 Data Structures

The core data structure is struct termdetect type. It contains all the internal
data for the asynchronous termination detection routine. Figure 5 gives a listing of
the data members within struct termdetect type as well as a brief description
of the function of each member.

Type Name Description
MPI Comm comm MPI communicator group
int Active 1 if involved in termination otherwise 0.
int nActiveProc # of active processors in termination
int ActiveRank Processor rank in active list.
int isRoot 1 if this proc is the root of the tree, 0 otherwise.
int PID processor id
int nProcs Number of processors in the tree
int PID Parent Process ID of this node’s parent.
int NumChildren[2] Processor IDs of children.
int UpMessagesLeft Number of up messages to wait for.
proc type pType Processor node type in the tree.
state type State Processor termination state.
int localMsgSendCount Sum of local messages sent.
int localMsgRecvCount Sum of local messages received.
int localWorkCount Sum of local work performed.
int subTreeMsgSendCount Sum of subtree’s sent messages.
int subTreeMsgRecvCount Sum of subtree’s recv’d messages.
int subTreeWorkCount Sum of subtree’s work performed.
int workCountLast for root, work count at previous iteration
int termTag Message ID tag used for termination messages in MPI

Figure 2: Data members for struct termdetect type

Under normal operation, the user should not need to access any of the data structure
members directly; the user functions provide the main interface. We have included
the data structure information here as a quick reference for debugging purposes.

5



6 Core Functions

The primary function calls used by termdetect are shown here. These should be the
only calls needed to run the termination detection routine.

6.1 termdetect init

Returns: void
Function Name: termdetect init
Parameters: struct termdetect type *ZZ

int active flag
int termTag
MPI Comm comm

Initializes the termination object and determines which processors will be actively
taking part in the termination routine. A processor sets active flag to 1 if it is
participating in the termination detection scheme. The processors that are partic-
ipating must all be contained within comm, but do not have to be exactly comm.
The termTag argument specifies the MPI Tag number that will be used for the
termination messages.

6.2 termdetect update sendcount

Returns: void
Function Name: termdetect update sendcount
Parameters: struct termdetect type *ZZ

int count

Adds count to the counter for local messages sent from this process during the
last cycle.

6.3 termdetect update recvcount

Returns: void
Function Name: termdetect update recvcount
Parameters: struct termdetect type *ZZ

int count

Adds count to the counter for local messages received by this processor during
the last cycle.

6



6.4 termdetect update workcount

Returns: void
Function Name: termdetect update workcount
Parameters: struct termdetect type *ZZ

int count

Adds count to the counter for local work units completed by this processor during
this cycle.

6.5 termdetect process

Returns: void
Function Name: termdetect process
Parameters struct termdetect type *ZZ

This function is the brain of the termination detection routine. Its function is to
process one iteration of the termination tree and pass the appropriate tokens up or
down with updated counts. Updates the values in ZZ. The basic pseudo-code of
this routine is shown in Algorithm 2.

6.6 termdetect isterminated

Returns: 1 or 0
Function Name: termdetect isterminated
Parameters struct termdetect type *ZZ

Calling this after termdetect process() will return true (1) or false (0) to indicate
if the code has met the appropriate conditions for termination and may safely be
exited. Recall the conditions for termination are (1) There are no unreceived mes-
sages and (2) no work is being performed.

7



7 Extra Functions

These are some extra functions that provide some debugging and other functional-
ity to the termdetect code.

7.1 termdetect getstate

Returns: state type
Function Name: termdetect getstate
Parameters struct termdetect type *ZZ

Returns the current state of the node. A node is in one of four states: UP (0),
DOWN (1), TERMINATE (2), or ERROR (3). These states indicate what that node
is doing. It is either set to pass information up to its parent, down to its children, it
is in termination, or an error occurred with the termination system.

7.2 termdetect printinfo

Returns: void
Function Name: termdetect printinfo
Parameters struct termdetect type *ZZ

Prints out the current state of a node’s termination data in a more easily readable
format. This is used for debugging.

7.3 termdetect printstatus

Returns: void
Function Name: termdetect printstatus
Parameters struct termdetect type *ZZ

Prints out some status information for the local node. This is mainly used for
debugging.

8 Acknowledgments

Thanks to Bruce Hendrickson, Steve Plimpton, and Lawrence Rauchwerger for
their assistance and advice to me while developing this module.

8



References

[1] A. H. Baker, S. Crivelli, and E. R. Jessup. An efficient parallel termination
detection algorithm. Technical Report CU-CS-915-01, University of Colorado,
2001.

9


